´óÏó´«Ã½

Published

UC Berkeley Creates 3D-Printed Cap That Checks Food Safety

The proposed “smart cap” features 3D-printed plastic with embedded sensors to measure the freshness of liquid food.

Share

The proposed “smart cap” features 3D-printed plastic with embedded sensors to measure the freshness of liquid food.

 

How many times have you thrown away a food item because the “sell by” date has passed? You're not alone. Those confusing labels oftentimes fail to tell us anything about the safety of food. Food waste isn’t some small problem either—the U.S. throws away about $165 billion worth of food each year. But new technology from UC Berkeley engineers may assist with this issue. 

 

UC Berkeley engineers, in collaboration with Taiwan’s National Chiao Tung University, have been working on developing 3D printing technology that also includes include electrical components, such as resistors, inductors, capacitors and integrated wireless electrical sensing systems. Their latest innovation is to print a wireless “smart cap” for a milk carton that detects signs of spoilage using embedded sensors, according to a news .

 

 “Our paper describes the first demonstration of 3D printing for working basic electrical components, as well as a working wireless sensor,” said senior author Liwei Lin, a professor of mechanical engineering and co-director of the Berkeley Sensor and Actuator Center. “One day, people may simply download 3D printing files from the Internet with customized shapes and colors and print out useful devices at home.”

 

We know how much polymers are used for 3D printing, however, when it comes to conductors of electricity, the material can be a poor candidate. So the researchers produced a system that used both polymers and wax to still take advantage of 3D printing to produce an object. After the print was completed, the researchers removed the wax, leaving hollow tubes into which liquid metal – silver – was injection and cured. They produced various electronic components using this method.  

 

 

The UC Berkeley engineers created a variety of 3D-printed electronic components including resistors, inductors and capacitors.

 

The researchers then integrated the electronic components into a plastic milk carton cap to monitor signs of spoilage. According to the university, the “smart cap” was fitted with a capacitor and an inductor to form a resonant circuit. A quick flip of the carton allowed a bit of milk to get trapped in the cap’s capacitor gap, and the entire carton was then left unopened at room temperature (about 71.6 degrees Fahrenheit) for 36 hours.

 

The circuit could detect the changes in electrical signals that accompany increased levels of bacteria. Those changes were detected wirelessly using the smart cap, which found that the peak vibration frequency of the room temperature milk dropped by 4.3% after 36 hours.

 

“This 3D-printing technology could eventually make electronic circuits cheap enough to be added to packaging to provide food safety alerts for consumers,” Lin said. “You could imagine a scenario where you can use your cellphone to check the freshness of food while it’s still on the store shelves.”

 

Lin said his lab is working on developing this technology for health applications.

 

The in a new open-access journal in the Nature Publishing Group called .

Plastics Size Reduction
Process Cooling
Blending & Dosing

Related Content

Automotive

Additive Fusion Technology Optimizes Composite Structures for Demanding Applications

9T Labs continues to enhance the efficiency of its technology, which produces composite parts with intentionally oriented fibers.

Read More
Tooling

Make Every Shot Count: Mold Simulation Maximizes Functional Parts From Printed Tooling

If a printed tool only has a finite number of shots in it, why waste any of them on process development?

Read More
Automotive

BMW Group Vehicle to Adopt 3D Printed Center Console

A vehicle coming to market in 2027 will include a center console carrier manufactured through polymer robot-based large-format additive manufacturing (LFAM).

Read More
NPE

420 Stainless Steel Now Qualified With TrueShape 3D Printing Technology

NPE2024: Mantle's additive manufacturing technology is designed for precision tooling.

Read More

Read Next

sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More
NPE

See Recyclers Close the Loop on Trade Show Production Scrap at NPE2024

A collaboration between show organizer PLASTICS, recycler CPR and size reduction experts WEIMA and Conair recovered and recycled all production scrap at NPE2024.

Read More