Calibrate Those Instruments
Make sure that your instruments are calibrated on a regular bases and also do a check and balance when gathering data. Never trust what you think you see the first time.
I was recently asked to visit a sheet processor to determine the cause of a major screw design problem. So, as always, I started at the beginning to gather all of the technical information to determine the root cause. This facility had 5 large extrusion sheet lines, and they were issues with all 5 extruders.
With the extruder at room temperature, I set up three dial indicators on the discharge flange of the barrel in the X,Y and Z axis. Then I turned on the barrel heaters to the standard zone setting to make sure that the barrel thermally expanded in the Z-axis direct as much as it should theoretically, and that the X and Y indicators move minimally.
The simple equation to determine the amount of expansion that a barrel should grow is:
ΔL=0.00000633 X ΔT X L
where:
ΔL = The change in length
ΔT = The change in temperature, in this case from room
temperature to the barrel zone setting
L = The heated length of the barrel
Amazingly the barrel grew within about 0.030-in. of the theoretical change in length, which in this case was approximately 0.750 in.
Then I measured the flight OD on several of the screws for various designs to determine if there was a consistent wear pattern. There was, so that was noted.
Then I gathered all of the process data. This is a very important part of doing a “CSI” on screws. This is where you collect the given throughput rate at a given screw speed against the headpressure during that timed rate check, motor load and melt temperature.
The motor load reading is taken from ammeter on the control panel; the screw speed is taken from the tachometer. If at all possible, it is best to have the customer’s plant manager to check the motor load with a hand held meter to verify that the ammeter on the control panel is reading correctly. As for checking the screw speed, this typically can be done by using a stop watch and counting the rotation of the drive quill at the back of the gearbox.
In this case the control panel ammeter was reading correctly, but the screw speed was not. The customer’s setup sheet showed that their standard setup was to have the extruder operating at 70 rpm, but when I counted the revolutions of the drive quill, I was getting 92 rpm. This is an error of 24%!
I then checked the tachometer on the line next to the one that I was gathering the process data from and the tachometer on it read 86 rpm but when I did the count, it was only rotating at 70 rpm. This meter was mis-calibrated by 23%!!!
So, the moral of the story is, the only thing worse than no data is BAD data. In this case, the customer immediately had their maintenance people re-calibrate all of their control instruments.
NOTE: Sometimes the screw rotation is faster than what a person is able to visually observe. In these cases, I take the advice given to me when I was a kid by an old mechanic mentor of mine (who only had a 4th grade education)...I “count the clicks.” I had no idea what he meant until he showed me.
Howard took this machinist scale (a pencil or pen will work) and turned on the chuck of the engine lathe in his shop, then took the scale and let it rub against the chuck. On an extruder it can be a small bolt in the back of the rotating drive quill or the drive key on the shank of the screw. Then with your stopwatch in one hand the “clicker” in the other, you can count the number of times that bolt or key hits the end of the scale, pencil or pen...or the number of clicks. “Count the clicks.” Very simple but very effective.
Just make sure that your instruments are calibrated on a regular bases and also do a check and balance when gathering data. Never trust what you think you see the first time.
__________________________________________________________________________________
Tim Womer is a recognized authority in plastics processing and machinery with a career spanning more than 35 years. He has designed thousands of screws for all types of single-screw plasticating. He now runs his own consulting company, TWWomer & Associates LLC. Contact: (724) 355-3311; tim@twwomer.com;
Related Content
Extrusion Excellence: This Year's Top Stories
Revisit the year’s most popular articles on extrusion technology and processes, showcasing innovations, best practices, and the trends that captured the plastics processing community’s attention.
Read MoreUpdated Software Reduces Die Design Iterations
New software said to reduce the number of fine-tuning iterations and die development time by at least 50%.
Read MoreNew Rotary Die and Cam Lock Design for Tubing
NPE2024: New design enables quick and easy assembly and disassembly of the crosshead, and eliminates the socket head cap screws.
Read MoreHow to Decrease the Extrudate Temperature in Single-Screw Extruders
In many cases, decreasing the discharge temperature will improve product quality and perhaps even boost rate. Here are ways to do it.
Read MoreRead Next
People 4.0 – How to Get Buy-In from Your Staff for Industry 4.0 Systems
Implementing a production monitoring system as the foundation of a ‘smart factory’ is about integrating people with new technology as much as it is about integrating machines and computers. Here are tips from a company that has gone through the process.
Read MoreLead the Conversation, Change the Conversation
Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.
Read More